發(fā)布時(shí)間:2018/01/03 00:00:00 來(lái)源:易學(xué)仕專(zhuān)升本網(wǎng) 閱讀量:3893
摘要:河南省專(zhuān)升本考試,教育部門(mén)并沒(méi)有發(fā)布統(tǒng)一的考試大綱,具體考試內(nèi)容都是參照往年考試試題整理。以下是專(zhuān)升本社區(qū)教務(wù)老師為大家整理的教學(xué)大綱,供廣大考生參考學(xué)習(xí)! 考生應(yīng)按本大綱的要求,掌握高等數(shù)學(xué)中函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積
河南省專(zhuān)升本考試,教育部門(mén)并沒(méi)有發(fā)布統(tǒng)一的考試大綱,具體考試內(nèi)容都是參照往年考試試題整理。以下是專(zhuān)升本社區(qū)教務(wù)老師為大家整理的教學(xué)大綱,供廣大考生參考學(xué)習(xí)!
因涉及部分?jǐn)?shù)學(xué)公式,請(qǐng)同學(xué)們下載文檔觀看
考試要求
考生應(yīng)按本大綱的要求,掌握“高等數(shù)學(xué)”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、無(wú)窮級(jí)數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法??忌鷳?yīng)注意各部分知識(shí)的結(jié)構(gòu)及知識(shí)的聯(lián)系;具有一定的抽象思維能力、邏輯推理能力、運(yùn)算能力和空間想象能力;能運(yùn)用基本概念、基本理論和基本方法進(jìn)行推理、證明和計(jì)算;能運(yùn)用所學(xué)知識(shí)分析并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
考試內(nèi)容
一、函數(shù)、極限和連續(xù)
(一)函數(shù)
1.理解函數(shù)的概念,會(huì)求函數(shù)的定義域、表達(dá)式及函數(shù)值,會(huì)作出一些簡(jiǎn)單的分段函數(shù)圖像。
2.掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性。
3.理解函數(shù)y =ƒ(x)與其反函數(shù)y =ƒ-1(x)之間的關(guān)系(定義域、值域、圖像),會(huì)求單調(diào)函數(shù)的反函數(shù)。
4.掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算; 掌握復(fù)合函數(shù)的復(fù)合過(guò)程。
5.掌握基本初等函數(shù)的性質(zhì)及其圖像。
6.理解初等函數(shù)的概念。
7.會(huì)建立一些簡(jiǎn)單實(shí)際問(wèn)題的函數(shù)關(guān)系式。
(二)極限
1.理解極限的概念(只要求極限的描述性定義),能根據(jù)極限概念描述函數(shù)的變化趨勢(shì)。理解函數(shù)在一點(diǎn)處極限存在的充分必要條件,會(huì)求函數(shù)在一點(diǎn)處的左極限與右極限。
2.理解極限的唯一性、有界性和保號(hào)性,掌握極限的四則運(yùn)算法則。
3.理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的性質(zhì),無(wú)窮小量與無(wú)窮大量的關(guān)系。會(huì)比較無(wú)窮小量的階(高階、低階、同階和等價(jià))。會(huì)運(yùn)用等價(jià)無(wú)窮小量替換求極限。
4.理解極限存在的兩個(gè)收斂準(zhǔn)則(夾逼準(zhǔn)則與單調(diào)有界準(zhǔn)則),掌握兩個(gè)重要極限:
,,
并能用這兩個(gè)重要極限求函數(shù)的極限。
(三)連續(xù)
1.理解函數(shù)在一點(diǎn)處連續(xù)的概念,函數(shù)在一點(diǎn)處連續(xù)與函數(shù)在該點(diǎn)處極限存在的關(guān)系。會(huì)判斷分段函數(shù)在分段點(diǎn)的連續(xù)性。
2.理解函數(shù)在一點(diǎn)處間斷的概念,會(huì)求函數(shù)的間斷點(diǎn),并會(huì)判斷間斷點(diǎn)的類(lèi)型。
3.理解“一切初等函數(shù)在其定義區(qū)間上都是連續(xù)的”,并會(huì)利用初等函數(shù)的連續(xù)性求函數(shù)的極限。
4.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):最值定理(有界性定理),介值定理(零點(diǎn)存在定理)。會(huì)運(yùn)用介值定理推證一些簡(jiǎn)單命題。
二、一元函數(shù)微分學(xué)
(一)導(dǎo)數(shù)與微分
1.理解導(dǎo)數(shù)的概念及其幾何意義,了解左導(dǎo)數(shù)與右導(dǎo)數(shù)的定義,理解函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系,會(huì)用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)。
2.會(huì)求曲線上一點(diǎn)處的切線方程與法線方程。
3.熟記導(dǎo)數(shù)的基本公式,會(huì)運(yùn)用函數(shù)的四則運(yùn)算求導(dǎo)法則,復(fù)合函數(shù)求導(dǎo)法則和反函數(shù)求導(dǎo)法則求導(dǎo)數(shù)。會(huì)求分段函數(shù)的導(dǎo)數(shù)。
4.會(huì)求隱函數(shù)的導(dǎo)數(shù)。掌握對(duì)數(shù)求導(dǎo)法與參數(shù)方程求導(dǎo)法。
5.理解高階導(dǎo)數(shù)的概念,會(huì)求一些簡(jiǎn)單的函數(shù)的n階導(dǎo)數(shù)。
6.理解函數(shù)微分的概念,掌握微分運(yùn)算法則與一階微分形式不變性,理解可微與可導(dǎo)的關(guān)系,會(huì)求函數(shù)的一階微分。
(二)中值定理及導(dǎo)數(shù)的應(yīng)用
1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會(huì)用羅爾中值定理證明方程根的存在性。會(huì)用拉格朗日中值定理證明一些簡(jiǎn)單的不等式。
2.掌握洛必達(dá)(L’Hospital)法則,會(huì)用洛必達(dá)法則求“”,“”,“”,“”,“”,“”和“”型未定式的極限。
3.會(huì)利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,會(huì)利用函數(shù)的單調(diào)性證明一些簡(jiǎn)單的不等式。
4.理解函數(shù)極值的概念,會(huì)求函數(shù)的極值和最值,會(huì)解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。
5.會(huì)判定曲線的凹凸性,會(huì)求曲線的拐點(diǎn)。
6.會(huì)求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。
7.會(huì)描繪一些簡(jiǎn)單的函數(shù)的圖形。
三、一元函數(shù)積分學(xué)
(一)不定積分
1.理解原函數(shù)與不定積分的概念及其關(guān)系,理解原函數(shù)存在定理,掌握不定積分的性質(zhì)。
2.熟記基本不定積分公式。
3.掌握不定積分的第一類(lèi)換元法(“湊”微分法),第二類(lèi)換元法(限于三角換元與一些簡(jiǎn)單的根式換元)。
4.掌握不定積分的分部積分法。
5.會(huì)求一些簡(jiǎn)單的有理函數(shù)的不定積分。
(二)定積分
1.理解定積分的概念與幾何意義, 掌握定積分的基本性質(zhì)。
2.理解變限積分函數(shù)的概念,掌握變限積分函數(shù)求導(dǎo)的方法。
3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。
4.掌握定積分的換元積分法與分部積分法。
5.理解無(wú)窮區(qū)間上有界函數(shù)的廣義積分與有限區(qū)間上無(wú)界函數(shù)的瑕積分的概念,掌握其計(jì)算方法。
6.會(huì)用定積分計(jì)算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積。
四、無(wú)窮級(jí)數(shù)
(一)數(shù)項(xiàng)級(jí)數(shù)
1.理解級(jí)數(shù)收斂、級(jí)數(shù)發(fā)散的概念和級(jí)數(shù)的基本性質(zhì),掌握級(jí)數(shù)收斂的必要條件。
2.熟記幾何級(jí)數(shù),調(diào)和級(jí)數(shù)和p—級(jí)數(shù)的斂散性。會(huì)用正項(xiàng)級(jí)數(shù)的比較審斂法與比值審斂法判別正項(xiàng)級(jí)數(shù)的斂散性。
3.理解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念。會(huì)用萊布尼茨(Leibnitz) 判別法判別交錯(cuò)級(jí)數(shù)的斂散性。
(二)冪級(jí)數(shù)
1.理解冪級(jí)數(shù)、冪級(jí)數(shù)收斂及和函數(shù)的概念。會(huì)求冪級(jí)數(shù)的收斂半徑與收斂區(qū)間。
2.掌握冪級(jí)數(shù)和、差、積的運(yùn)算。
3.掌握冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì):和函數(shù)是連續(xù)的、和函數(shù)可逐項(xiàng)求導(dǎo)及和函數(shù)可逐項(xiàng)積分。
4.熟記ex,sinx,cosx,ln(1+x),的麥克勞林(Maclaurin)級(jí)數(shù),會(huì)將一些簡(jiǎn)單的初等函數(shù)展開(kāi)為x-x0的冪級(jí)數(shù)。
五、常微分方程
(一)一階常微分方程
1.理解常微分方程的概念,理解常微分方程的階、解、通解、初始條件和特解的概念。
2.掌握可分離變量微分方程與齊次方程的解法。
3.會(huì)求解一階線性微分方程。
(二)二階常系數(shù)線性微分方程
1.理解二階常系數(shù)線性微分方程解的結(jié)構(gòu)。
2.會(huì)求解二階常系數(shù)齊次線性微分方程。
3.會(huì)求解二階常系數(shù)非齊次線性微分方程(非齊次項(xiàng)限定為(Ⅰ) f(x),其中為x的n次多項(xiàng)式,為實(shí)常數(shù);(Ⅱ),其中,為實(shí)常數(shù),,分別為x的n次,m次多項(xiàng)式)。
六、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.理解向量的概念,掌握向量的表示法,會(huì)求向量的模、非零向量的方向余弦和非零向量在軸上的投影。
2.掌握向量的線性運(yùn)算(加法運(yùn)算與數(shù)量乘法運(yùn)算),會(huì)求向量的數(shù)量積與向量積。
3.會(huì)求兩個(gè)非零向量的夾角,掌握兩個(gè)非零向量平行、垂直的充分必要條件。
(二)平面與直線
1.會(huì)求平面的點(diǎn)法式方程與一般式方程。會(huì)判定兩個(gè)平面的位置關(guān)系。
2.會(huì)求點(diǎn)到平面的距離。
3.會(huì)求直線的點(diǎn)向式方程、一般式方程和參數(shù)式方程。會(huì)判定兩條直線的位置關(guān)系。
4.會(huì)求點(diǎn)到直線的距離,兩條異面直線之間的距離。
5.會(huì)判定直線與平面的位置關(guān)系。
試卷結(jié)構(gòu)
試卷總分:150分
考試時(shí)間:120分鐘
試卷內(nèi)容比例:
函數(shù)、極限和連續(xù) 約20%
一元函數(shù)微分學(xué) 約30%
一元函數(shù)積分學(xué) 約30%
無(wú)窮級(jí)數(shù)、常微分方程 約15%
向量代數(shù)與空間解析幾何 約5%
試卷題型分值分布:
選擇題共 30題, 每小題2分,總分60分;
填空題共10題, 每小題2分,總分20分;
計(jì)算題共 10題, 每小題5分,總分50分;
應(yīng)用題共 2題, 每小題7分,總分14分;
證明題共1題, 每小題6分, 總分6分。
操作成功